
1

Getting Started with Arduino:

“You will struggle when you first learn to write code in

Arduino, those who succeed are those who persevere

through the frustration and learn to use the plentiful

resources available to them.”

-the person who wrote this

Good terms to know:

Arduino:

-The company that created the hardware and software that you will use to create

the control system for your MAE106 robot.

Arduino Boards:

-The microcontroller that will serve as the control hub for your final project. They

are capable of being connected to various inputs (sensors, power sources, etc.)

as well as providing outputs to control various parts. Arduino boards are

controlled by user-uploaded code, created in the IDE/

IDE:

-An IDE, or “Integrated Development Environment”, is the platform on which you

will construct the code that will be uploaded and run by your Arduino board.

Functions:

-More than a party, functions are modules of code that a programmer (you!)

create to accomplish a task. These functions can be used repeatedly and can be

utilized by other functions in the same code.

Pseudocode:

-An incredibly useful practice/tool in your coding arsenal, pseudocode is an

informal description of the function (or actions) that you want to transform into

code. Pseudocode is great for logically organizing your thoughts before or during

code-writing.

Debugging:

 -Debugging is the process of fixing problems and/or run-errors in your code.

Often demonstrated when you compile your code, debugging can involve simple issues

like adding that semi-colon or bracket that you forgot or can require addressing major

logic errors. Most of your learning (and frustrations) will be during this vital process.

2

Downloading your IDE (NO NEED TO

DO THIS IN THE LAB COMPUTERS):

Step 1: Go to the Arduino website

[www.arduino.cc/en/main/software] and

select the operating system that you

are running and download the

corresponding software. NOTE: YOU

ARE NOT REQUIRED TO

CONTRIBUTE, THERE IS A “JUST

DOWNLOAD” OPTION

Step 2: Open the executable file after it

has completed downloading and follow the

instructions in the set-up wizard.

Step 3: After you

are done setting

up through the

wizard, your IDE

should open up

and you are

ready to code!

Things to keep in mind…

1. “ctrl” + “z” is your friend! These two buttons will allow you to undo your last action

each time you press them in series. Great for when you make a small mistake

and need to take a step back.

3

2. ALWAYS save your work, no matter how insignificant you think it is. You never

know what you might want to look back to.

a. Making multiple save files for different trains of thoughts can be very

helpful! It allows you to look back and compare code or see how your train

of thought has changed

3. You’re never “in too deep”. Don’t be afraid to take a few steps back to fix or

simplify previous code. Building code on a poor foundation will only make your

life harder in the long run!

4. Build good practices! There are many nuances in writing code, each person

develops their unique flair, but there are many common practices that are

conducive to good code formulating that will improve your understanding as well

as help with debugging.

a. Camel case – manthiswasprobablyprettyhardtoread

ButReadingThisIsALotEasier. When you have to use variables and can’t

use your spacebar to denote separate words, camelCase is your friend,

save your eyes the trouble.

b. You almost always have semi-colons after each statement. Double-check

those (and similar nuances)

c. Indent after each new “loop”. Sure you might not know what a loop is, but

look at the pictures below and tell me what you like better. Save your

eyes, and your head, the pain.

5. Don’t be afraid to ask for help. Utilize all your resources; the internet is your

friend, but so are your TA’s! They are all here to help you achieve the most you

can.

4

Resources:

The following are just some (BUT NOT ALL) resources that you can turn to

while you’re laboring on your control system.

1. An online booklet of MANY functions and capabilities of the Arduino boards and

software

2. Some helpful techniques to help your debugging process

3. Video that goes over many things about your Arduino Board as well installing

your IDE. Start at 15:13

4. Video that strips your IDE down to the basics! Good place to start if you’ve never

worked with Arduino before

5. Confused about why your function isn’t working or looking for inspiration?

Forums are great!

6. Last Resort

7. Talk to your peers!

8. Contact your TAs

http://playground.arduino.cc/uploads/Main/arduino_notebook_v1-1.pdf
http://playground.arduino.cc/uploads/Main/arduino_notebook_v1-1.pdf
https://ucexperiment.wordpress.com/2013/02/25/simple-arduino-debugging-techniques/
https://youtu.be/kLd_JyvKV4Y?t=15m13s
https://youtu.be/kLd_JyvKV4Y?t=15m13s
https://youtu.be/YDkdVZ7e3OY
https://youtu.be/YDkdVZ7e3OY
https://stackoverflow.com/
https://stackoverflow.com/
https://www.google.com/

5

Arduino:

1. Pull-up Resistor + LED

a. Connect an LED circuit to the Arduino and write a sketch to output a digital

signal that will power the LED. (attach link of LED-resistor diagram)

b. Create a circuit connecting the button to the Arduino and establish it as an

input_pullup pin.

c. Use the Serial Monitor to visualize how the pull-up resistor works with the

button.

d. Use the values from the button to control the LED, create a sketch that

turns the LED off when the button is pressed and turns the LED on when

the button is not pressed.

2. Add switch cases

a. Use a “switch case” that has three states with the following functions in

each state. The states should be changed by pressing the button. After

the third state, pressing the button should return the state to the first state.

i. Turn LED on

ii. Blink LED without using “delay()” at a frequency of 2Hz

iii. Blink LED without using “delay()” at a frequency of 8Hz

b. Save your file on your computer and open a new sketch to begin part 3.

You will need to come back to this sketch at the end of part 3.

3. PWM Piecewise Function

a. Re-create the circuit from Week 2 Lab with the potentiometer and 5 Volt

power supply but this time use the 5V from the Arduino.

b. Measure the value of the output from the potentiometer and display it in

the serial monitor.

i. Show the raw value as well as the voltage equivalent.

c. Below is a piecewise function that you will turn into code that is dependent

on your potentiometer. Your potentiometer is the input that the piecewise

function is dependent on. The output is the PWM that goes into your LED.

The function is displayed below:

𝑃𝑊𝑀(𝑝𝑜𝑡)

= {

𝑃𝑊𝑀max − 𝑝𝑜𝑡, 𝑝𝑜𝑡 ≤ 𝑃𝑊𝑀𝑚𝑎𝑥

0, 𝑃𝑊𝑀𝑚𝑎𝑥 < 𝑝𝑜𝑡 ≤ 3 ∗ (𝑃𝑊𝑀𝑚𝑎𝑥 + 1)
𝑝𝑜𝑡 − 3 ∗ (𝑃𝑊𝑀𝑚𝑎𝑥 + 1), 𝑝𝑜𝑡 > 3 ∗ (𝑃𝑊𝑀𝑚𝑎𝑥 + 1)

i. Things to consider before programming:

1. What is the PWM_max?

2. What is the range of the values you read from the

potentiometer? What are the units?

3. Why is the PWM_max + 1 necessary instead of just

PWM_max? Be able to explain what happens if the +1 was

not in the piecewise function.

ii. Upon completion, turn it into a callable function if you have not

done so already and call it from your void loop.

6

d. Replace the third state of your “switch case” with the PWM(pot)

piecewise function.

4. Show a TA your final work to complete this section and move on to general

General:

The purpose of these problems is to challenge you to learn self-dependence when it

comes to programming and struggling through problems. The TA’s will help you but only

after you have demonstrated an exhaustive search of online resources and each other.

You can refer to any resource you might need, you can look in the guide for a start.

1. Write a sketch that displays, in the serial monitor, the n terms of harmonic series

and their final sum where n = 10.

Harmonic Series: 1 + 1/2 + 1/3 + 1/4 + 1/5 ... 1/n terms

2. Write a sketch that displays the sum of the series [1+x+x^2/2!+x^3/3!+....] up to

(x^5/5!) and one for (x^10/10!).

a. Note: you do not need to write two separate sketches, instead you should

be able to just modify a variable in your code to obtain both solutions.

3. Write a sketch to display the perfect numbers between 1 and 50 in the serial

monitor.

